Large-Scale Multi-label Text Classification - Revisiting Neural Networks
نویسندگان
چکیده
Neural networks have recently been proposed for multi-label classification because they are able to capture and model label dependencies in the output layer. In this work, we investigate limitations of BP-MLL, a neural network (NN) architecture that aims at minimizing pairwise ranking error. Instead, we propose to use a comparably simple NN approach with recently proposed learning techniques for large-scale multi-label text classification tasks. In particular, we show that BP-MLL’s ranking loss minimization can be efficiently and effectively replaced with the commonly used cross entropy error function, and demonstrate that several advances in neural network training that have been developed in the realm of deep learning can be effectively employed in this setting. Our experimental results show that simple NN models equipped with advanced techniques such as rectified linear units, dropout, and AdaGrad perform as well as or even outperform state-of-the-art approaches on six large-scale textual datasets with diverse characteristics.
منابع مشابه
Large Scale Multi-label Text Classification with Semantic Word Vectors
Multi-label text classification has been applied to a multitude of tasks, including document indexing, tag suggestion, and sentiment classification. However, many of these methods disregard word order, opting to use bag-of-words models or TFIDF weighting to create document vectors. With the advent of powerful semantic embeddings, such as word2vec and GloVe, we explore how word embeddings and wo...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملGrounded Recurrent Neural Networks
In this work, we present the Grounded Recurrent Neural Network (GRNN), a recurrent neural network architecture for multi-label prediction which explicitly ties labels to specific dimensions of the recurrent hidden state (we call this process “grounding”). The approach is particularly well-suited for extracting large numbers of concepts from text. We apply the new model to address an important p...
متن کاملAutomated multi-label text categorization with VG-RAM weightless neural networks
In automated multi-label text categorization, an automatic categorization system should output a label set, whose size is unknown a priori, for each document under analysis. Many machine learning techniques have been used for building such automatic text categorization systems. In this paper, we examine virtual generalizing random access memory weightless neural networks (VG-RAM WNN), an effect...
متن کاملInitializing neural networks for hierarchical multi-label text classification
Many tasks in the biomedical domain require the assignment of one or more predefined labels to input text, where the labels are a part of a hierarchical structure (such as a taxonomy). The conventional approach is to use a one-vs.-rest (OVR) classification setup, where a binary classifier is trained for each label in the taxonomy or ontology where all instances not belonging to the class are co...
متن کامل